PROPAGATION OF ELASTIC STRESS WAVES IN
CONTINUOUSLY INHOMOGENEOUS ANISOTROPIC MEDIA
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Anisotropic materials of fibrous structure are being more and more widely used in technology., A
characteristic feature of these materials is the broad possibility of controlling structure. In view of this,
structures and bodies made of them generally have not only anisotropic, but also continuously inhomogeneous
properties, This fact together with the possibility of varying the character of the anisotropy and inhomogen-
eity necessitate a broad and detailed study of such bodies, including their behavior under dynamic loading.

In the present article we investigate certain characteristics of the propagation of elastic waves in anisotropic
and inhomogeneous media, in particular the possibility of dynamic compactness of stress waves,

1, Statement of the Problem. We consider a continuously inhomogeneous and anisotropic medium bounded
by a surface S and extending beyond it to infinity. Up to the time t = 0 the medium is at rest, At t= 0 points
on the surface S are disturbed by some system of loads which subsequently depend on time, The problem is
to explain (in the linear formulation) some characteristics of the propagation of stress waves produced by
these disturbances.

We write down the necessary relations {1}:

the equations of motion

p—-lv i ol = [jj; (1 -1)

Hooke's law

(1.2)

oii = Ciitlg,):

the Cauchy equations
&y = -;— (Valts + Viig). (1.3)
By using the symmetry properties of the stiffness tensor Cijkl we obtain from (1.2) and (1.3}

ol = Cijklvkul. {1.4)

We form the following combination
ClniVa (0717407 — ) = 0.

Using (1.4) we have

ClmiVi (pVi01) = 1y, {1.5)

System (1,5) is the basic resolving system of the elasticity-theory stress equations in curvilinear coor-
dinates for an inhomogeneous anisotropic body. Since the stress tensor is symmetric, and the components of
the stiffness tensor Cll{mj are symmetric in the indices ! and m, there are six independent equations in the

six unknowns o7py,.
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We set the following boundary conditions for system (1.5):

otiv;ls = TUH();

(1.6)
o' = oif = 0 at t=0; (1.7)
0'1.1—)0 as '$l—>°°9 (1.8)

where H(t) is the Heaviside function; Ix[, distance from the surface S; and vj, a unit vector normal to the
surface,

Equations of type (1,5) were derived in cartesian coordinates for a homogeneous isotropic médium in
a different way by Ignachak (cf. [2]) and written in the form

. A . ’
'%(O'ij ~ 5o 5i50kk) = Opi,pj T T ni- _ (1.9)

Setting
Cimin = Mimbsn + W(6150m; + 8;0mz), p = const

in (1,5), where A and u are the Lamé parameters, shows the equivalence of Eqs. (1.5) and (1.9).

2. Deviation of Resolvents of the Boundary-Value Problem, We assume that the mechanical parameters
of the medium are such that at each fixed point in space the equations of motion (1.5) are hyperbolic, There-
fore, the velocity of propagation of a disturbance must be finite, and inthe solution of boundary-value problem
(1.5)-(1.8) there must be a surface of discontinuity Q(xq, t) = 0 separating the disturbed region from the re-
gion at rest. Consequently, we seek the solution in the class of discontinuous functions.

We write the solution of the boundary-value problem as the product of a smooth function Fli times the
generalized Heaviside function H:

ol = F¥(z, ) H(Q), (2.1)

which automatically satisfies the radiation conditions (1.8). The surface of discontinuity (wavefront) is not
known beforehand. It can be found from the equation determining the condition necessary for the existence
of a solution of form (2.1).

We see that Q is expressible in terms of t:
Q =1 — m(ra)v (202)
where w is a smooth function of coordinates and independent of time, Then {2,1) can be written as
ofi= Fif(z,, t — 0)H(t — ). 2.3)

The form of Eq. (2.3) enables us to take the Laplace transform

Gii = | giicptar. ' (2.4)

4]

Since the method of Laplace transformations (2.4) can operate with impulse functions, we assume their
presence in our solution:

FH = g9V (1 — o) + Fi (Zay t — @)y (2.5)

where F%j is the analytic part of the function Fij, We expand FlU in (2.5) in a Taylor series in time in the
neighborhood of t= w, i.e., in the neighborhood of the wavefront. Then

L > i) N
Fi = gD (xa) 8 (t — w) +- 2 n!(xa) (! — ). 2.6)

Actually we have obtained the representation of the solution of (2.3) in the form of a ray expansion [3].
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If we now take the Laplace transform of (2.1) and use (2,6) we obtain

o0
i - iin)
~ij __ Jii-pe __ W 2 -pw
¢’ = F"e T dmi p71+1 e * (207}
n=-1

The representation (2.6) and (2,7) enables us to take inverse transforms automatically,

A representation similar to (2.6) was used in [4] in a one-dimensional problem of a stress wave in an
inhomogeneous rod to determine the change of the wave amplitude at the front during its propagation.

Using (1.7) we write the Laplace transform of system (1.5)

C'}mth (P—l\hgﬁ) = 1’"251"1' (2.8}

Substituting Eqgs. (2.7) and (2.8), collecting terms in the same powers of p and equating them to zero, we ob-
tain

*leizij{n_q)) + ﬂ[lm(zij(n—l)) = Dlm(zii(‘n)).

(2.9
where
Din (39) = 071 Clnj0,,005" — Zims {2,10)
M (37) = Clnj [va (07%0,:27) + 070,75} 2.1
Lim () = Chasvy (67527 212
n=-1,0.12. i.j=1,23
Here

zij(—g) = Zij(—3) == (J_

3. Solvability of the System of Recurrence Equations (2.9). I can be shown that for (2,9) to be solvable
it is necessary that the system of algebraic equations

(p_lcilzmj;‘)’iw,h — gljgmi) zij(_l) =0 (3‘]_)
have a nontrivial solution, The necessary and sufficient condition for this is the vanishing of the determinant
of the matrix of the unknowns [5]. If we write the matrix in (3.1) in cartesian coordinates, 2 linear trans-
formation of its rows and columns (preserving the determinant) can be found which reduces it to the form

"Cz?mokm’l - 96: . 0 O O\
0 0 0
.. . 0 0 0
Clios Chons CHhous —e; 05 0 (3.2)
Cigmvh; Cig(ﬂ,h; C?};mvk; O; — 0; 0
Cégv (O P ng&),h; ng(’)’h; 0; 0; - p,’
(k and 7 are summed over from 1 to 3). Hence it is clear that
~ ¢ det| Clfo, 0, — p8]| = 0. (3.3)

The last equation is the characteristic equation for (1,5), whose surfaces are determined by the equa-
tion € = 0 [6]. The boundary conditions for the function w follow from the condition that at t = 0 the surface
S must coincide with the wavefront surface, i,e,,

[a} ]S = Q. (3‘4)
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If we introduce the idea of the velocity of the front along its normal, and the direction cosines of the normal,
and use the equations [7]

TGy = —f?.lgrad |-t = |grad o|%,
v; = —Qﬂ.lgrad ml-—l = m’ian . (3.5)

we can rewrite (3,3) in the equivalent form
det ' Cﬁ:vhvl —_ pGﬁG” =0, (3 6)

Thus, the problem of.finding Gfl from (3,6) is reduced to the problem of determining the eigenvalues
of the symmetric matrix Gi%kavl. It is known that in this case all the eigenvalues of the matrix are real.

Hence, it follows that along any given direction vj in an elastic medium there are exactly three possible ve-
locities of wave propagation [8]. The problem of determining the function w is described in somewhat more
detail in [3],

It is known [5] that the application of elementary transformations with columns of a matrix is equivalent
to a linear transformation of variables in (3.1). It turns out that for cartesian coordinates the transformation
from matrix (3.1) to (3.2) is equivalent to introducing the new variables

. :
(~1 N (-1 : -1 -1 - - - -
W= ,241 %0,y (1=1,2,3), V=25 V=250, y5V=250. 3.7
7= .

By analogy with (3.7) where n= —1 we introduce variables yi(“) for n> -1,

We transform the infinite system of equations obtained into groups of six equations each, which together
with boundary conditions (1.6) permit the determination of yi("i), . e.»y{™, ..., in succession, and con-
sequently the components of the stress tensor (for a known function of the front w), We assume that all val-
ues of w satisfying Eqs. (3.3) and (3.4) have been determined, and that the functions are single-valued and
sufficiently smooth functions of coordinates, thus excluding from consideration the presence of caustics.

We substitute one of these values into the transformed system of equations (2,9) for n= =1, From the
form of matrix (3.2) it follows that six of the components yi(-l) are expressed solely in terms of r < 3 func-
tions of yi(‘i), yz(’i), y,,("i), where 3 —r is the rank of the corner minor in (3.2). In addition let us consider
the first three of the transformed equations (2.9) for n = 0. We have a system of linear algebraic equations
for v, y®, y{? with an inhomogeneous right-hand side depending on the given coefficients in the equations,
the known solution for w, and yi(-i). It is known [5] that for such a system of equations there are exactly r
linearly independent transformations of rows giving a zero combination on the left-hand side of the system.
This enables us to obtain r first-order partial differential equations for the r unknown functions of the yi("I).
We go through a similar process for the remaining solutions for w, As a result we arrive at the problem of
determining r; functions from the same number of columns of the equations, where r; is the total number of
functions to be determined

The rank of the corner minor of (3,2) can depend on both the point in space xq and the choice of the
coordinate system (the direction of the gradient of w), Using the representation (3.6) and reducing this ma-
trix to the Jordan form, it can be shown that if at a given point for given directions its rank is 3 —r, the
multiplicity of the velocity G, in this case is r, It follows from this that for any coordinates at each point
in space finding the yi(-l) i=1, 2, 3) is reduced to the solving of a system of three first-order partial differ-
ential equations, The general solution of the problem is written as a sum of particular solutions, and must
satisfy the boundary conditions on the surface S, Let us obtain these conditions, We expand the transform of
the right-hand side of (1.6) in the series

oo

; 5 i)
=2 55 k=1 (3.8)

n==k

)

We rewrite (1.6) using Egs, (3.5) and (3.7)
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o0,5ls = y'ls = G [s T'H (8).
Hence
g ls = 6;! IST“") (i=1,2,3):

Consequently the problem of determining the yi(’i) i=1,2,...s6) is reduced to a Cauchy boundary-value
problem, Henceforth, we assume that the boundary S, the coefficients in Eqgs. (1.5), and the boundary func-
tions T; in (1.6) possess the required properties of smoothness to ensure the existence and uniqueness of
the solution of this problem. Hence it follows that the expansions in Egs, (2.7) and (3.8) must begin with the
same values of n,

After the yi("i) have been found, the values of yi(o), se s Yi(n), o o« «» are determined from the recurrence
relations.

4. Physical Conditions of Compatibility, Relation between Stress and Displacement Wave Fields, Sup-
pose the Laplace transform of a displacement wave is given by the series

{4.1)

and the transform of the stress wave has the form (2.7). We substitute (4.1) and (2,7) into the transformed
equation of motion (1.1), collect terms with the same powers of p, and equate them to zero. Then we obtain

pfi-b = 0; (4.2)
pf©@ = —ziit-Yg,; : (4.3
pfitnsl) = y giitn=) _ zii(n) g {4.4)

forn=0, ]., 2, 3, s o o

The condition (4.2) indicates that the order of the minimum discontinuity of the time derivative of the
displacement is one lower than the minimum order of the discontinuity of the stress. By using Eqs, (4.3) and
(4.4) and the series (2.6) for the known equation of the wavefront, the total field of the displacement wave can
be constructed if the field of the stress wave is known. Equations (4,2)-(4.4) are valid for any continuous me-
dium, elastic or not, since no physical laws were used in their derivation.

We now substitute (4,1) and (2,7) into the Laplace transform of Hooke's law and collect terms in the
same powers of p,

Then we obtain

Cilo """ = 0; (
’ 4,5)
fi(=1y __ pijl LGN
4 - Ck wslf H (4.6)
iy ijl h(n) __ A(n+1)
z = Ck (Vlf m:lf ) (4.7)

forn=0, 1, 2, 3, .... Equations (4.3) and (4,6) determine the relation between the minimum discontinu~
ities of the stress waves and the minimum discontinuities of the displacement waves, A similar relation for
discontinuities of higher derivatives is determined by Eqs, (4.4) and (4.7).

Equations (4.6) and (4.7) enable us to find the fotal fields of stress waves if we are given the field of the
displacement wave,

Using the notationof (3,5), Eq, (4.3) can be rewritten in the form
gDy, = —pG, i,
1f £ = o,
2O v, = —p@, fih, (4.9) '

Equation (4.8) agrees with the condition of dynamic compatibility given in [7] and derived there in a different
way.
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5. Conditions of Dynamic Compactness for Stress Waves, We say that a system consisting of a semi-
infinite elastic medium bounded by a surface S on which there is a distribution of active loads satisfies the
condition of dynamic compaciness if under the action of a boundary load for a finite time t, each point of the
medium is at rest after the passage of all the unloading wavefronts.,

It follows from this definifion that dynamically compact systems transfer the given distribution of the
boundary load insuchaway that disturbances localized in time on the boundary. correspond to disturbances
localized in time at each point of space, '

In accord with the definition of compactness we replace the general boundary conditions (1.6) by the
conditions :

o¥lg = A¥(x,)|sPH(8)G (2, 1) : (5.1)
(no summation over indices), where
01; t < O!
G, t)y=HMHH({t,—t) =11, 0<I<E,
0, t>1,.

In (5.1) the six components Alj are expressed in terms of the three components of the stress vector, the
gradient at the surface S, and the characteristics of the medium in the neighborhood of this surface (cf, the
last three rows of matrix (3.2)). It turns out that the investigation of dynamic compactness for arbitrary
functions Pij reduces to veryifying this condition for
Pii(t) = §(1).
)= o0 (5.2)
LEMMA, A system for stresses (1.5), (5.1), (1.7), and (1.8) is dynamically compact if and only if to
the boundary disturbance (5.1) for condition (5.2) there corresponds the solution

~

ot = E AY (25) 8 (D), (5.3)

- where 2, =t = wylxg) = 0 is the equation of the corresponding front.

Proof. As noted in Sec. 3, to the boundary condition (5.1), taking account of (5.2), there must corre-
spond, in any case, the solution :

. 3 B KR 3 ¢ O] n
oV = 2 {A;J (z,,)&(szv)+2 z‘;, QH (Qv)}
=1 n=0

. s (5.4)
= 2 (4 (22) 8 (@) + B (20, Q) H ().
y=1 '

If we consider solution (5.4) as fundamental, in accord with the principle of superposition [6], to the boundary
disturbance (5.1) there must correspond the solution
3

oi=3 {Az"P“' (@) 6@ t)+ | PG, 1)

=1

. 3 min(@y.dg) .
B e 8y =0 H @y — 1) = (49000 P@ 6@t 4| [ PO B () o @)
y=1 b
(i and j are not summed over).
We consider the solution at an arbitrary fixed interior point Xqyr We have

0 for: Quax <0,
I (t) for 0 << Qmax, Qnin < Los (5.5)
1

3 ] - -
3 | P9 (x) BY (2a @y — 1) X Quin> 1y
y=lg

Ui’. ‘x“. =

(i and j are not summed over); the Ii} are certain functions of the time which are not generally zero, If

the conditions of the lemma are satisfied, we have, from (5.4) 3 B =0, and from (5.5) there follows (5.3),
=1
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i.e., dynamic compactness, If the requirement for dynamic compactness is satisfied, it is necessary for the

8 'yl
last expression in (5.5) to vanish for arbitrary Pii, But this is equivalent to VZ]IB; =0

THEOREM. The necessary and sufficient condition for system (1.5)-(1.8) to be dynamically compact
is that the following system of equations be satisfied on all fronts simultanecusly:

Diym(z) = Mym(@) = Lym(z) = 0, 5.9

0
where the operators Dypm, My, and Ly are described in (2,10)-(2.12),

Proof., We use the lemma proved, Suppose a load (5.1) acts with condition (5.2), This corresponds to
the fact that the expansion of the transform of (5.1} contains just one term of series (2.7}, We solve the re-
current system (2.9), After determining the zii(-1), finding the i) n=10,1,...) is reduced as a conse-
quence of (5.6) to the solution of a Cauchy problem for first-order differential equations with zero initial
values on S; these solutions are zero, Thus, the conditions of the lemma are satisfied. This theorem en-
ables us in principle to isolate all classes of inhomogeneities for a given surface S when for any distributions
of boundary loads the condition of dynamic compactness is satisfied, To do this it is sufficient to eliminate
the functions zil from (5.6).

It is not physically obvious, but the dynamic compactness of a stress wave does not necessarily lead to
dynamic compactness of the displacement wave., The situation when both waves are dynamically compact is
actually exceptional, It follows from Egs. (4.2)~(4.4) that for a system which is dynamically compact with re-
spect to stress, the displacement field which corresponds to a boundary disturbance of the type (5.2) increases
linearly with time. Therefore it is clear physically that for one-dimensional problems with cylindrical or
spherical symmetry when normal stresses act on the boundary, dynamic compactness for stress waves cannot
occur, This can be proven analytically also,

6. Conditions of Dynamic Compaciness for a One-Dimensional Stress Wave of Rotation oy, for a Cyl-
indrical Cavity in a Cylindrical Orthotropic Inhomogeneous Space. We consider a system consisting of a cyl-
indrical cavity in a cylindrical orthotropic inhomogeneous space, and a boundary load o3y uniformly dis-
tributed over the surface of discontinuity for a time, The coordinate axes (x;, Xy, X3) — {r, ¢, 7} coincide
with the axes of orthotropy. The equation of the surface of the cylindrical cavity is r = ry = const. Let us
find the conditions of dynamic compaciness for this system,

For cylindrical coordinates [1]

1 2 2 —1
gn=1s G =14 ge=1, Tnn==1; Ty =T =r""%

and the rest of the Christoffel symbols are zero; the stress oy is the physical projection of the stress ten-
sor o2 and is given by

o = g2
Crp = o) gugse = o'

{6.1)
The conditions of dynamic compactness (5.6) for this system degenerate into the three equations
(01212(”,21 - p"z) 2 =0 {6.2)
232 C
2o E4+E=0 E=pTou) (6.3)
[o= (2% + 3r—1222)] ; = O, {6.4)

and the remaining equations of (5.6) are satisfied identically, Here z!? means a discontinuity of o'? of any
order,

It follows from (6.2) that

@,21 = p20-2 (9 = ]/Qszm),

where CJ,, is the physical projection of the stiffness tensor,
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From (6,3) and (6,1) we obtain the law of variation of the stress wave amplitude at the front

Gro = Oo(r=16)17,

where o, = const and is determined from the magnitude of the stress at the boundary and the boundary char-
acteristics of the medium, We obtain from (6.4) a first-order differential relation relating the density and
stiffness functions,

912 = C1r3/2p [3r-! 4 (In 0), 1]'1,‘ (6.5)

where C; is an arbitrary constant.

In the special case pCy, = C, = const we obtain from (6.5)
p=Cyr—1/% 0;212 = Czcglrllzr
where Cy is an arbitrary pesitive constant,
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